Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in-place.
Each element in the array represents your maximum jump length at that position.
Determine if you are able to reach the last index.
Example 1:
Input:
[ [1,1,1], [1,0,1], [1,1,1] ]Output:
[ [1,0,1], [0,0,0], [1,0,1] ]
Example 2:
Input:
[ [0,1,2,0], [3,4,5,2], [1,3,1,5] ]Output:
[ [0,0,0,0], [0,4,5,0], [0,3,1,0] ]
Follow up:
- A straight forward solution using O(mn) space is probably a bad idea.
 - A simple improvement uses O(m + n) space, but still not the best solution.
 - Could you devise a constant space solution?
 
Solution
from typing import List
class Solution:
    def setZeroes(self, matrix: List[List[int]]) -> None:
        if not matrix or not matrix[0]:
            return
        rows, cols = len(matrix), len(matrix[0])
        isRowZero, isColZero = False, False
        for row in range(rows):
            for col in range(cols):
                if matrix[row][col] == 0:
                    if row == 0: isRowZero = True
                    if col == 0: isColZero = True
                    matrix[0][col] = 0
                    matrix[row][0] = 0
        for row in range(1, rows):
            for col in range(1, cols):
                if matrix[0][col] == 0 or matrix[row][0] == 0:
                    matrix[row][col] = 0
        if isRowZero:
            for col in range(cols):
                matrix[0][col] = 0
        if isColZero:
            for row in range(rows):
                matrix[row][0] = 0
Test Cases
test = Solution()
matrix = [
  [1,1,1],
  [1,0,1],
  [1,1,1]
]
test.setZeroes(matrix)
assert matrix == [
  [1,0,1],
  [0,0,0],
  [1,0,1]
]
matrix = [
  [0,1,2,0],
  [3,4,5,2],
  [1,3,1,5]
]
test.setZeroes(matrix)
assert matrix == [
  [0,0,0,0],
  [0,4,5,0],
  [0,3,1,0]
]
matrix = []
test.setZeroes(matrix)
assert matrix == []
matrix = [[]]
test.setZeroes(matrix)
assert matrix == [[]]
print('All Passed!')
Big O Analysis
Space Complexity: O(1)
Time Complexity: O(MN), where M is number of rows and N is number of cols